
www.manaraa.com

Columbus State University Columbus State University 

CSU ePress CSU ePress 

Theses and Dissertations Student Publications 

2014 

Characterizing Wetland Hydrology, Chemistry, And Soils For An Characterizing Wetland Hydrology, Chemistry, And Soils For An 

Endemic Crayfish, The Piedmont Blue Burrower Endemic Crayfish, The Piedmont Blue Burrower 

Jess H. Gilmer II 

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations 

 Part of the Environmental Studies Commons 

Recommended Citation Recommended Citation 
Gilmer II, Jess H., "Characterizing Wetland Hydrology, Chemistry, And Soils For An Endemic Crayfish, The 
Piedmont Blue Burrower" (2014). Theses and Dissertations. 169. 
https://csuepress.columbusstate.edu/theses_dissertations/169 

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress. 

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1333?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/169?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com



www.manaraa.com

COLUMBUS STATE UNIVERESITY 

CHARACTERIZING WETLAND HYDROLOGY, CHEMISTRY, AND SOILS FOR AN 

ENDEMIC CRAYFISH, THE PIEDMONT BLUE BURROWER 

A THESIS SUBMITTED TO 

THE COLLEGE OF LETTERS AND SCIENCES 

IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

THE GRADUATE PROGRAM IN ENVIRONMENTAL SCIENCE 

DEPARTMENT OF EARTH AND SPACE SCIENCE 

BY 

JESS H GILMER II 

mummmmmmMmiiMMM^mmmiMssssss^maa 



www.manaraa.com

Copyright © 2014 Jess H Gilmer II 

All Rights Reserved. 

njumiuwmiimuumjuuuMUHi 



www.manaraa.com

BB 

CHARACTERIZING WETLAND HYDROLOGY, CHEMISTRY, AND SOILS FOR AN 

ENDEMIC CRAYFISH, THE PIEDMONT BLUE BURROWER 

Signature Page Approved: 

Committee Chair 
Columbus State University 
December 2014 

By 

Jess H Gilmer II 

Committee Chair: 

Dr. Troy A. Keller 

Committee Members: 

Dr. Clinton I. Barineau 

Dr. Chester Figiel 

isssm HBBB 



www.manaraa.com

ABSTRACT 

Anthropogenic alteration of Earth's ecosystems has pushed global biodiversity into a 

state of crisis. Freshwater species have been particularly vulnerable, with crayfish ranking as the 

second most imperiled taxonomic group in North America. Primary burrowers represent only 

15% of crayfish species in North America; however, they constitute 32% of imperiled crayfish. 

Despite their conservation importance, little is known about the ecology of burrowing crayfish. 

To advance our knowledge about the habitat characteristics of burrowing crayfish, groundwater 

hydrology, water chemistry, and soil properties were assessed to determine their importance for 

the state-listed endangered, primary burrower Cambarns harti. Groundwater hydrology and 

chemistry were monitored from shallow wells installed among C. harti burrows and in similar 

areas without burrows (<50 m away) at 4 sites across Meriwether County (GA). Groundwater 

depth and temperature were automatically recorded every 30 min, whereas dissolved oxygen and 

pH were measured manually every 1-4 weeks from 6/6/2013-8/1/2014. Water chemistry (K+, 

Mn2+/3+, Cl", Fe2+/3+, Si02) was analyzed from samples every 1-4 weeks (1/16/2014-8/1/2014) 

from wells and crayfish burrows. To assess crayfish soil preferences, 3 soil cores were collected 

from random locations within 10 m of each well. Groundwater levels for areas with C. harti 

burrows were ~ 3 times shallower than areas lacking burrows. Groundwater was acidic 

(pH=5.60, mean) and experienced hypoxia (<3 mg/L dissolved oxygen) for at least 48% of the 

study. Wells and burrows had similar water chemistry except for Cl", which was on average 16- 

18 times more concentrated in burrow water. Soils were sandy (85.5%) with minor amounts of 

silt/clay (11.3%) and only differed slightly among sites. Thus, this study found that C. harti 

inhabits wetlands with shallow groundwater (> 1 m) that are acidic and often hypoxic. While this 

burrower can tolerate variation in groundwater level, anthropogenic activities that depress 

groundwater could extirpate populations of C. harti. 
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INTRODUCTION 

Anthropogenic alteration and deterioration of Earth's environments have pushed global 

biodiversity into a state of crisis (Wilson, 1988; Vitousek, 1994), where extinction rates have 

accelerated to a pace greater than other extinction events recorded in the fossil record (Singh, 

2002). Freshwater ecosystems have experienced tremendous environmental 

degradation/destruction by human activities (Ricciardi & Rasmussen, 1999; Dudgeon et ah, 

2006). These changes have caused a high percentage of freshwater taxa to be imperiled and 

many species to go extinct (Sala et ah, 2000). 

North American freshwater fauna are highly imperiled, with a majority of these taxa 

being invertebrates (Master, 1990; Master et ah, 2000; Wilcove & Master, 2005; Strayer, 2006). 

Crayfish are ranked as the second most imperiled taxonomic group in North America (Master, 

1990). Primary burrowing crayfish (Hobbs, 1981) inhabit underground burrows to maintain 

connectivity to groundwater (Grow & Merchant, 1980). While these hypogean crustaceans 

comprise only 15% of crayfish species in North America, they constitute 32% of imperiled 

crayfish (Taylor et ah, 1996; Welch & Eversole, 2006; Taylor et ah, 2007). Endemism, poor 

dispersal capabilities, and lack of scientific knowledge (due to the elusiveness of primary 

burrowers) contribute to the high degree of impediment among primary burrowers (Gibert et ah, 

1994; Welch & Eversole, 2006; Lefebure, 2007). 

Survival and success of primary burrowing crayfish depend on their ability to maintain 

connectivity with groundwater (Grow & Merchant, 1980; Stoeckel et ah, 2011; Helms et ah, 

2013a; Helms et ah, 2013b). One factor affecting burrowers' ability to maintain connectivity is 

changes in groundwater depth. Crayfish dig deeper burrows to access water during times of 

TO4WWM 
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receding groundwater (Grow & Merchant, 1980; Johnston & Figiel 1997; Welch et al, 2008; 

Helms et al., 2013b). While groundwater is likely to be an important determinant of burrowing 

crayfish success, little information exists in the scientific literature quantifying groundwater 

variation in crayfish habitats over extended periods of time. Because wetlands are delineated 

based on groundwater levels and the presence of crayfish burrows, it is critical to understand the 

association between these two important wetland indicators (Wakeley et al, 2010). 

Crayfish burrowing could be affected by soil properties (Stoeckel et al, 2011). For 

example, one could hypothesize that soils must have some cohesiveness to maintain burrow 

structural integrity, but too much cohesiveness could compromise crayfish digging capacity. 

Crayfish can burrow in a variety of soil types, for example, Cambarus diogenes can burrow in 

fine-grained, clay-rich (Grow, 1982; Helms et al, 2013a) and sand-rich soils (Helms et al., 

2013 a) as long as there is some clay content. Stoeckel et al. (2011) reported Cambarus striatus 

rarely reached groundwater levels (15 cm below surface) when burrowing in sand. Additional 

data on crayfish soil preferences are needed because studies have focused on a limited number of 

species at only a few locations. These data are essential to determine if generalizations can be 

made about soil properties at sites with burrowing crayfish. 

Physical and chemical characteristics of groundwater may also influence the survival and 

distribution of hypogean crayfish, as has been documented from studies of epigean species 

(Crawshaw, 1974; Capelli & Magnuson, 1983; France, 1985, 1993; Smith et al., 1996; Cairns & 

Yan, 2009). The metabolism, physiology, and behavior of crayfish are predominantly influenced 

by water temperature (Crawshaw, 1974; Whiteley et al., 1997), pH (France, 1985; Wood & 

Rogano, 1986; Patterson & deFur, 1988), and oxygen concentration (Wiens & Armitage, 1961; 

Gade, 1984; Reiber & McMahon, 1998). Shallow groundwater environments, such as those 
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inhabited by primary burrowers, differ from surface waters in that they exhibit minimal daily and 

annual fluctuations in temperature (Parsons, 1970; Silliman & Booth, 1993) and are commonly 

depleted of oxygen (Malard & Hervant, 1999). The chemistry of shallow groundwaters is 

predominantly a function of the rock composition for the area (Back, 1960; Frape et al, 1984; 

Nordstrom et al., 1989; Guo & Wang, 2005). Little is known about how spatio-temporal 

variation in groundwater physicochemical parameters (e.g., temperature, pH, dissolved oxygen) 

influence primary burrowers. These data are critical to develop effective conservation strategies 

for protecting imperiled hypogean crayfish. 

In order to address unanswered questions regarding the ecology of primary burrowing 

crayfish, I assessed the hydrology, chemistry, and soils at sites inhabited by Cambariis harti, a 

state-listed endangered primary burrower found in Meriwether and Troup Counties in Georgia, 

USA (Figiel, 2009; Keller et al, 2011; Helms et al., 2013b). Like most primary burrowers, 

general knowledge of this species and its associated habitat are lacking. Conservation of C. harti 

relies on the ability to define its critical habitat. The goal of this research was to characterize 

groundwater and soil parameters for the habitat of C. harti. To characterize C. harti habitat, 

hydrology, chemistry and soils were compared between C. harti habitats and similar areas 

lacking evidence of C. harti. I hypothesize 1) C. harti will be associated with areas having 

groundwater close to the surface because burrow excavation to shallow groundwater requires 

less energy than to deeper groundwater; 2) chemistry for C. harti habitats will be similar to that 

of areas without C. harti because their close proximity results in similar underlying rock 

composition; and 3) Soils among sites will be similar to those reported by Helms et al. (2013b) 

for the type locality. 
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METHODS 

Study sites 

To assess the habitat characteristics of C. harti, field investigations were conducted at 4 

locations within Meriwether County, GA (Fig. 1). Meriwether County, a rural area that 

represents the southernmost county of the Atlanta Metropolitan area, resides in both the 

Chattahoochee and Flint River drainage basins. All study sites were located within the Piedmont 

ecoregion (Omernik, 1987) and were underlain by crystalline metamorphic rocks. Study sites 

were selected based on accessibility and the presence of C. harti populations. 

The eastern-most site is owned by Stan Cartwright (Cartwright Property; Fig. 2) and is 

located within the Flint River drainage basin. The land is covered by second growth deciduous 

forest and sandy loam soil (USDA NRCS, 2010). According to USGS maps, the underlying 

bedrock is mica schist (Lawton et al, 1976). Cambarns harti populations are generally found 

inhabiting areas located along seepage zones at the base of slopes. Burrows are also concentrated 

on the western side of a second-order tributary of Cold Springs Brook, with a few burrows by an 

unknown species on the eastern side of the floodplain. 

Site 2 is the northern-most site and is owned by Jack Chandler (Chandler Property; Fig. 

2). The land cover is composed of deciduous forest and stony loamy coarse sand soil (USDA 

NRCS, 2010). The underlying bedrock is undifferentiated granitic bedrock (Lawton et al, 1976) 

Cambarns harti populations are located along seepage zones at the base of a steep slope. 

Sampling locations are within a few meters of a first-order tributary of Walnut Creek (Flint River 

Watershed). 
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The southern-most site, the Warm Springs Fish Hatchery, is located adjacent to the U.S. 

Fish and Wildlife Service Warm Springs Regional Fisheries Center (Fig. 2). This site is within 

the Flint River drainage basin and is the type locality for C. harti. The dominant cover type is 

mixed deciduous forest. Soils are classified as loamy sand (USDA NRCS, 2010) and are 

underlain by quartzite bedrock (Lawton et al, 1976). Burrows of C. harti are concentrated in 

seepage zones positioned at the base of slopes located in close proximity to a first-order tributary 

of Cold Springs Brook. 

The western-most site, White Sulphur Springs (Fig. 2), is a mixed deciduous forest 

underlain by amphibolite bedrock (Lawton et al, 1976) and dominated by silty loam soils 

(USDA NRCS, 2010), and is the only study site residing in the Chattahoochee River drainage 

basin. White Sulphur Springs has been a site of human occupation for an extensive period of 

time (Steven Stewart, pers. comm.). Home to four natural springs, the site has undergone recent 

small-scale (-3000 m2) deforestation (November of 2013) for the construction of a new bottling 

water facility (April of 2013). Cambarus harti burrows are located in forested riparian zones >50 

m downstream from the spring boils. 

Groundwater level and temperature 

To test the hypothesis that groundwater levels for areas inhabited by C. harti were closer 

to the ground surface than that of surrounding areas, 2 groundwater monitoring wells were 

installed at each of the 4 study sites (n=8). At each site, an experimental groundwater monitoring 

well was installed in areas of active C. harti burrows (burrow well), and a control groundwater 

monitoring well (non-burrow well) was installed in a nearby area (10 to 45 meters) without 

crayfish burrows. 

imuiiummmn 
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Monitoring wells were constructed of PVC pipes (10.2 cm diameter, ~ 150 cm long) that 

were perforated on two sides, with 1 cm diameter holes spaced 12 cm apart. These perforations 

were used to improve flow through wells to ensure that well water was similar to groundwater. 

Wells were covered with a nylon silt sleeve to exclude suspended particulates. Wells were 

installed to depths > 30 cm below the water table to ensure water was always available during 

sampling (Fig 3). 

To monitor fluctuations in groundwater level and temperature, SOLINST® Junior (Solinst 

Canada LTD) submersible pressure transducer leveloggers were installed at the bottom of each 

well (n=8) (Fig. 3). Leveloggers were programmed to record water pressure (kPa) and 

temperature (°C) every 30 minutes and recorded data from 6/6/2013-8/1/2014 (n=20,207 

records/site). Preliminary well monitoring indicated that recording intervals of 30 minute were 

appropriate for capturing groundwater level fluctuations. 

Because pressure transducers in the wells measure both water and atmospheric pressure, 

all measurements required a barometric pressure correction to calculate groundwater level (Fig. 

3). Barometric pressure was monitored every 30 min using a SOLINST® Barologger deployed in 

the non-burrow (control) well located at the Warm Springs Fish Hatchery (Fig. 3). To ensure the 

barologger did not come in contact with groundwater, it was stationed near ground level. 

Groundwater data recordings for monitoring well datasets had varying start and end 

dates. To ensure all datasets had the same time ranges, recordings prior to 6/7/2014 were omitted 

from analyses. During the collection of groundwater samples, leveloggers were temporarily 

removed from wells. During this time, leveloggers recorded surface pressure and temperatures. 

IUII1JIIJI1J 
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These values were replaced by interpolated values calculated by averaging the previous and 

following recordings. 

To meet the assumption of independence among data points for statistical analysis, daily 

averages separated by 2 weeks were extracted from each well dataset. This 2-week interval was 

determined from autocorrelation analysis of time-series well data. The initial daily average was 

randomly chosen to be 6/29/2014. Comparisons between treatments and across study sites were 

performed using a fully factorial Two-Way Analysis of Variance (ANOVA). Pairwise 

comparisons were performed using a Tukey HSD. Statistical analyses were performed using 

IBM SPSS Statistics (ver. 21, IBM Corp., 2012). 

In order to analyze the dynamic nature of time-series of groundwater level, 2 approaches 

were used: exceedance probabilities and time-series spectral analysis. Exceedance probabilities, 

the proportion of time groundwater exceeds a given depth, were constructed using methods 

modified from Gore (1996). Spectral analysis identifies frequencies of oscillations in time-series 

data (e.g., seasonally). Spectral analysis was performed after the application of a fast Fourier 

transformation that decomposes data into a series of sine and cosine functions (Keller et a!., 

2001). Data were detrended and demeaned before performing the analysis using R version 3.1.1 

(R Core Team, 2014). To reduce noise within the periodogram, artificial smoothing was 

performed using a Daniell smoother (weighting coefficient=20). 

The selection process of groundwater temperature data was the same protocol used for 

groundwater level (i.e., 2-week daily averages). Temperature data did not have normally 

distributed errors and were not homoscedastic. Mathematical functions were unsuccessful in 

transforming temperature to meet the assumptions of a Two-Way ANOVA. Therefore, 

temperature was compared between treatments and across study sites using a non-parametric 
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statistical approach, the Shierer-Ray-Hare extension of the Kruskal-Wallis Test (Dytham, 2011). 

All pairwise comparisons were tested using a Tukey HSD on ranked values from each dataset 

(Sokal & Rohlf, 1995). 

Groundwater chemistry 

Groundwater pH, dissolved oxygen, and temperature (used to correct dissolved oxygen 

and pH) were measured for areas with and without C. harti. Measurements were performed using 

a water quality multi-parameter sonde (Yellowsprings, Inc 6920-V2) at least 10 cm below the 

water surface of each well. Measurements were recorded every 1-4 weeks from 6/1/2013- 

8/1/2014 (n=23). Sonde calibrations were performed less than 24 hours prior to each sampling 

event. 

Statistical analysis of dissolved oxygen and pH included only data from sampling dates 

(n=20) when measurements were collected from all 8 wells. Comparisons of pH between 

treatments and across study sites were statistically analyzed using a fully factorial Two-Way 

ANOVA (n=160). Pairwise comparisons were tested using a Tukey HSD. Statistical analysis 

was performed using IBM SPSS Statistics (ver. 21, IBM Corp., 2012). 

Dissolved oxygen did not meet the assumptions of the Two-Way ANOVA model and 

could not be successfully transformed. Thus, data were analyzed using a non-parametric 

statistical method, the Scheirer-Ray-Hare extension of the Kruskal-Wallis Test (Dytham, 2011). 

All pairwise comparisons were tested using Tukey HSD on ranked values (Sokal & Rohlf, 1995). 

Exceedance probabilities were used to quantify the proportion of time groundwater exceeds a 

given dissolved oxygen concentration (modified from Gore, 1996). To assess if a relationship 

existed between groundwater temperatures and dissolved oxygen, a two-tailed Spearman's rank- 
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order correlation was used. A non-parametric model was used because dissolved oxygen did not 

meet the assumptions of parametric statistics. Statistics were performed using IBM SPSS 

Statistics (ver. 21, IBM. Corp., 2012). 

To characterize and compare groundwater chemistry for C. harti habitats and areas 

without C. harti, groundwater samples were collected from non-burrow wells, burrow wells and 

crayfish burrows (n=3) at each study site (n=4). Groundwater samples were collected every 1-4 

weeks from 1/16/2014 to 8/1/2014 (n==T0). Groundwater samples were collected after YSI 

measurements were taken. Groundwater samples were extracted from crayfish burrows located 

in close proximity to burrow wells (<10 m). Samples were collected from crayfish burrows by 

digging a hole around a burrow deep enough to fill with water from a side burrow chamber. A 

different crayfish burrow was excavated for water samples each sampling trip. When 

groundwater was sufficiently close to the ground surface a siphon pump was used to collect 

burrow water. Water samples were placed in 500 mL bottles and stored in a refrigerator (T° <6 

°C) until analysis. 

Groundwater samples were analyzed for chloride, potassium, iron, manganese, and silica. 

The chemicals chosen for analysis were selected from a set of inorganic chemicals that provide 

insight into the natural solute characteristics of the groundwater (Berndt et ah, 2005). 

Groundwater samples were filtered using grade B glass micro fiber filter media (pore size= 1 jam). 

Groundwater chemistry was analyzed with colorimetric methods using spectrophotometers 

(HACH DR/2700). Iron, manganese, and potassium were analyzed within 1-2 weeks of 

collection; chloride and silica were refrigerated at <6 °C and analyzed within 28 days. In order to 

analyze groundwater samples for iron and manganese, samples were digested within 1 -2 weeks 

after collection following a modified version of the EPA's mild digestion with hot plate for 
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metals analysis (Hach, 1999). Digestions were performed by acidifying 40 mL of groundwater 

sample to apH<2 by adding 0.05 mL (2 drops) of concentrated nitric acid and 2mL of 6N 

hydrochloric acid. Samples were heated on a hot pan overnight (12 hours) at 120 °C until 10- 

15mL of sample remained. Samples were neutralized with 5N sodium hydroxide and were 

refilled to their original volume (40 mL) using deionized water (Millipor Ultrapure). 

Potassium, iron, and silica concentrations were compared between wells and crayfish 

burrows (n=3) and across study sites (n=4) using a fully factorial Two-Way MANOVA. 

Potassium and silica did not meet the assumptions of the MANOVA model. Therefore, 

potassium and silica were transformed using a log transformation (In + 1). Pairwise comparisons 

were tested using a Tukey HSD. Statistical analyses were performed using IBM SPSS Statistics 

(ver. 21, IBM Corp., 2012). 

Transformations were unsuccessful in conforming chloride and manganese data to meet 

the assumptions of parametric statistics. Thus, these data were analyzed using a non-parametric 

statistical method equivalent to a Two-Way ANOVA, the Shierer-Ray-Hare extension of the 

Kruskal-Wallis Test (Dytham, 2011). All pairwise comparisons were tested using a Tukey HSD 

on ranked values (Sokal & Rohlf, 1995). Statistical analyses were performed using IBM SPSS 

Statistics (ver. 21, IBM Corp., 2012) and Microsoft Excel 2007. 

Soil collections and analysis 

In order to test the hypothesis that C. harti burrows in soils having a similar grain-size 

distribution as the type locality, 3 soil cores were collected near each well (n=6 per site). Cores 

were taken from randomly selected points at each study site using a 99 cm long, 1.75 cm 
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diameter soil probe. Soil samples were transported and stored in plastic bags at 22 °C until 

analysis. 

Soil samples were oven dried (10 hr at 150 °C) before being weighed for dry mass using 

a Ohaus balance (0.1 mg). Samples were sorted using an Humboldt automated sieve shaker (3 

min) using sieve diameters > 2 mm (gravel), 1- 2mm (sand), 0.5-1 mm (sand), 0.25-0.5 mm 

(sand), 0.125-0.25 mm (sand), 0.06-0.125 mm (sand), and hardpan deposits < 0.0 6 mm 

(silt/clay). Once sieving was complete, the mass of each sieve size class was measured (0.1 mg). 

A fully factorial Two-Way MANOVA was used to compare percent sand and silt/clay 

content between areas with and without C. harti burrows and across study sites. Percent sand and 

silt/clay were calculated separately for each sample as the mass of sand or silt/clay divided by the 

total sample mass. A Tukey HSD was used to test all pairwise comparisons. Statistics were 

performed using IBM SPSS Statistics (ver. 21, IBM Corp., 2012). 

RESULTS 

Study Sites 

During the course of this study, the Pine Mountain area, which includes Meriwether 

County, experienced warmer than normal temperatures (Georgia Automated Environmental 

Monitoring Network). The mean temperature for the area from 6/6/2013-8/1/2014 was 17.57 °C, 

0.73 °C warmer than the mean annual temperature for the area (Georgia Automated 

Environmental Monitoring Network). The Pine Mountain area received an average rainfall of 

0.37 cm/day from 6/6/2013-8/1/2014 (Georgia Automated Environmental Monitoring Network), 

which is equal to the mean rainfall for the area (Georgia Automated Environmental Monitoring 

Network). 
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Groundwater level and temperature 

Groundwater temperature and depth were monitored from 6/6/2013-8/1/2014 to assess 

the ecological importance of fluctuations in groundwater depth and temperature for areas with 

and without C. harti. Variance in groundwater depths between burrow and non-burrow wells 

were significantly different (Levene's test, F=199.16, PO.001), where overall burrow well 

groundwater depths displayed a higher degree of fluctuations (Coefficient of variation=0.74) 

compared to non-burrow wells (Coefficient of variation=0.33; Fig. 4). Spectral analysis indicated 

that groundwater depths oscillated at low frequencies for areas with and without C. harti, where 

the period of the oscillations occurred on time-scales >6 weeks (Table 2). 

To test the hypothesis that C. harti inhabits areas with groundwater depths closer to the 

ground surface than areas without C. harti, groundwater depths were compared between burrow 

and non-burrow wells across the 4 study sites (Table 1). Cambarus harti inhabited areas where 

mean groundwater depths were nearly 3 times shallower than areas lacking C. harti burrows 

(Two-Way ANOVA, Fu 168=256.58, PO.001; Fig. 5). Groundwater depths differed significantly 

across study sites (Two-Way ANOVA, F3> i68=10.539, PO.001); mean groundwater depth for 

the Cartwright Property was 14-20 cm deeper than the other study sites (Tukey HSD, PO.001; 

Fig. 6). Patterns in mean water depth differed among well types and study sites as indicated by 

the statistically significant interaction term (Two-Way ANOVA, F3; 168=18.724, PO.001). 

Differences in groundwater depths among well types were also evident in exceedance 

probability plots of the time series data (Fig 6). Groundwater depths for non-burrow wells were 

shallower than 49.1 cm for 10%, 77.2 cm for 50%, and 99.0 cm for 90% of the study period. In 
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contrast, wells in areas with burrows had water levels shallower than 9.7 cm for 10%, 29.5 cm 

for 50%, and 44.8 cm for 90% of the time (Fig. 6). 

Groundwater temperatures were positively correlated with air temperature (Spearman's 

rank-order, N=421, p=0.776, PO.001; Fig. 7). The highest temperatures were recorded during 

summer months while the lowest temperatures were observed during the winter (Fig. 8). While 

air temperatures during the course of study ranged 36.4 °C (-9.0 to 27.4 °C), groundwater 

temperatures varied only 12.5 °C (8.4 to 20.9 °C). Comparisons of mean groundwater 

temperature showed no significant differences between wells in areas with and without C. harti 

burrows (Sheirer-Hare-Ray, df=l, H=0.55, P>0.5) or among study sites (Sheirer-Hare-Ray, df=3, 

H=0.55, P<0.5). 

Groundwater chemistry 

One goal of this research was to determine if water chemistry within C. harti habitats is 

similar to that of areas without C. harti. Groundwater in wells maintained acidic conditions 

throughout the study (pH 5.0-6.3). Mean groundwater in areas with C. harti were 50% (as 

measured by differences in hydrogen ion concentrations) more acidic than groundwater in areas 

lacking C. harti (Two-Way ANOVA, F1; i44=18.017, PO.001; Fig. 9). Study sites also differed 

significantly in groundwater pH (Two-Way ANOVA, F3j i44=13.077, PO.001; Fig. 9). 

Groundwater at White Sulphur Springs was 71% more basic than the Cartwright Property and 

92% more basic than the Warm Springs Fish Hatchery (Tukey HSD, PO.001 for both). 

Groundwater at the Chandler Property was 56% more basic than at Warm Springs Fish Hatchery 

(Tukey HSD, PO.003). Comparisons of pH between treatments and across study sites indicated 

a significant treatment by site interaction (Two-Way ANOVA, F3, ]44=9.233, PO.001). 
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Dissolved oxygen concentrations displayed a high degree of variability over space and 

time (Coefficient of Variation= 0.81). Groundwater in wells exhibited hypoxic and oxic 

conditions (Fig. 10). Wells stationed among crayfish burrows exhibited hypoxic conditions (<3 

mg/L dissolved oxygen) 39% of the study time (Fig. 11). The lowest (0.24 mg/L) and highest 

(8.31 mg/L) well water dissolved oxygen concentrations were measured at the Cartwright 

Property (June and January 2014 respectively). 

Despite the fact that dissolved oxygen concentrations differed on average by 11% 

between treatments (Fig. 10), no statistically significant differences were detected (Sheirer-Hare- 

Ray, df=l, H= 0.996. P>0.1). In contrast, mean dissolved oxygen concentrations in differed 

significantly across study sites (Sheirer-Hare-Ray, H=16.02, df=3, P<0.005; Fig. 10). Mean 

dissolved oxygen concentration at the Cartwright Property was 32% higher than the Chandler 

Property (Tukey HSD, P=0.010), 73% higher than the Warm Springs Fish Hatchery (Tukey 

HSD, PO.001), and 77% higher than White Sulphur Springs (Tukey HSD, PO.001). White 

Sulphur Springs also had 48% lower groundwater well dissolved oxygen concentrations than the 

Chandler Property (Tukey HSD, P=0.010). A significant site by treatment interaction term for 

groundwater dissolved oxygen was also detected in the analysis (Sheirer-Hare-Ray, df=3, 

H=9.25, PO.05). Groundwater dissolved oxygen concentrations shifted seasonally. The highest 

dissolved oxygen concentrations were recorded during the cooler months and decreased during 

the summer (Fig. 12). This seasonal shift may have been caused by changes in temperature, as 

groundwater temperature and dissolved oxygen concentrations were negatively correlated 

(Spearman's rank-order correlation, n=152, p= -0.67, PO.001; Fig. 13).Groundwater 

temperature and percent dissolved oxygen saturation were also negatively correlated 

(Spearman's rank-order correlation, n=152, p= -0.63, PO.001). 
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To assess the natural solute characteristics of groundwater in C. harti habitats, water 

samples were analyzed from wells with and without burrows and from burrows directly at each 

of the study sites (1/16/14-8/1/2014). In general, groundwater chemistry (as indicated by 

potassium, iron, and silica) did not statistically differ among treatments (Two-Way MANOVA, 

Wilks' Lambda, F8>2io=0.543, P=0.823; Fig. 14) but did statistically differ across study sites 

(Two-Way MANOVA, Wilks' Lambda, Fi2,278.095=3.242, P=0.012). The differences among sites 

were primarily attributed to potassium (Two-Way ANOVA, F3) i08=3.80, P=0.012; Fig. 15), 

where groundwater at White Sulphur Springs had an average concentration 2 times greater than 

the Cartwright Property (Tukey HSD, P=0.009; Fig. 15). Groundwater chemistry also showed a 

significant treatment by site interaction (Two-Way MANOVA, Wilks' Lambda, F24, 

367.511=1-696, P=0.023). 

Statistical analysis of chemical analytes that failed to meet the assumptions of the 

parametric models (i.e, chloride and manganese) indicated that chloride concentrations differed 

significantly among treatments (Sheirer-Hare-Ray, df=2, H=27.32, P>0.001; Fig. 14). Water in 

crayfish burrows contained 16 times higher concentration than non-burrow wells (Tukey HSD, 

P<0.001) and 18 times higher concentration than burrow wells (Tukey HSD, PO.001). Chloride 

concentrations in groundwater also differed statistically across study sites (Sheirer-Hare-Ray, 

df=3, H=34.95, PO.001; Fig. 15). Groundwater at White Sulphur Springs contained, on average, 

4 times higher chloride concentrations than groundwater at the Chandler Property (Tukey HSD, 

P=0.028), 7 times higher concentrations than the Cartwright Property (Tukey HSD, P=0.009), 

and 10 times higher concentrations than the Warm Springs Fish Hatchery (Tukey HSD, 

P=0.006). No statistically significant interaction term was detected between treatments and study 

sites in their chloride concentrations (Sheirer-Hare-Ray, df=6, H=5.36, P>0.1). In contrast to 
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chloride, groundwater manganese concentrations did not significantly differ among treatments 

(Sheirer-Hare-Ray, df=2, H=3.02, P>0.1). However, manganese concentrations did statistically 

differ across study sites (Shierer-Hare-Ray, df=3, H=49.56, P<0.001; Fig. 15). Groundwater at 

White Sulphur Springs contained 2 times the concentration of manganese as the Cartwrisht 

Property (Tukey HSD, P<0.001) and nearly 2 times the concentration as the Chandler Property 

(Tukey HSD, PO.001). Water from Warm Springs Fish Hatchery contained half the 

concentration of manganese as White Sulphur Springs (Tukey, HSD, P=0.027) and nearly 1.5 

times the amount of manganese as the Cartwright (Tukey HSD, PO.001) and Chandler 

Properties (Tukey HSD, P=0.006). Manganese did not show a significant interaction term 

between treatments and study sites (Sheirer-Hare-Ray, df=6, H=672.05, P<0.001). 

Soil Texture 

Soils collected from all sites were dominated by sand-sized particles (79-92%) and 

contained minor amounts of silt-clay (10-20%). Sand and silt/clay content did not statistically 

differ between areas with and without C. harti (Two-Way MANOVA, Wilks' Lambda, F2,15= 

0.801, P=0.467, Fig. 16). Despite the absence of treatment differences, sand and silt/clay content 

differed statistically across study sites (Two-Way MANOVA, Wilks' Lambda, F6,30= 5.767, 

P<0.001). Soils from the Warm Springs Fish Hatchery contained ~ 50 % lower silt/clay as the 

other study sites (Tukey HSD, P<0.05; Fig. 16). Soil sand and silt/clay content showed no 

significant treatment by site interactions (Two-Way MANOVA, Wilks' Lambda, F6j30=0.646, 

P=0.693). 
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DISCUSSION 

Groundwater level and temperature 

The survival of primary burrowing crayfish may well depend on their ability to maintain 

access to water sources below ground (Grow & Merchant, 1980; Stoeckel et al., 2011; Helms et 

al, 2013a; Helms et al, 2013b). One of the primary goals of this research was to compare 

groundwater levels between C. harti habitats and areas without crayfish. Results showed that 

groundwater levels for C. harti habitats were on average 3 times shallower than surrounding 

areas. Well water levels near burrows never exceeded 90 cm below the ground surface at any of 

the habitats studied (Fig. 6). In contrast, water in wells without burrows regularly exceeded 90 

cm below ground surface (Fig. 5). Thus, this study found support for the hypothesis that C. harti 

dig burrows in habitats with relatively shallow groundwater (i.e., less than 1 m). 

This study also documented that groundwater levels in C. harti habitats varied 

considerably over time. Low-frequency oscillations in groundwater levels were shown to be the 

dominant form of groundwater fluctuations. These oscillations occurred at time scales of 6 weeks 

or greater, suggesting that groundwater levels shift monthly or seasonally. Relatively rapid 

changes in groundwater were also recorded regularly in the data (Fig. 4). However the most 

rapid shifts (hours to days) in water level occurred when groundwater was rising. Declines in 

groundwater appeared to occur more slowly, taking days to weeks to return to previous levels. 

These groundwater level fluctuations are likely to affect the ecology and conservation of 

these crayfish. Primary burrowers have been shown to increase excavation activities during times 

of declining groundwater levels or during drought conditions (Johnston & Figiel 1997; Stoeckel 

et al., 2011; Helms et al, 2013a; Helms et al, 2013b). Crayfish need to expend energy to 
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excavate burrows; thus, animals burrowing in areas with deeper groundwater or levels that 

fluctuate widely could experience smaller broods, slower growth, and reduced survival. 

Groundwater level fluctuations appeared to be driven by local processes at each study 

site. For 3 sites, groundwater levels covaried in wells with C. harti burrows and areas without 

(Fig. 4). This correlation among wells suggests that processes controlling groundwater levels 

were local because water levels in burrow and non-burrow wells vacillated synchronously. The 

Warm Springs Fish Hatchery was the only site where wells that did not show groundwater level 

covariance. At this site, the well installed near burrows regularly exceeded the ground surface. 

This truncated the data (i.e., eliminated the highest water levels) making it impossible to 

determine whether both wells were truly synchronized. 

In addition to supporting burrowing crayfish populations, groundwater level fluctuations 

have implications for other important ecological processes, e.g. the maintenance of wetlands. 

One legal definition of a wetland requires groundwater levels to be greater than or equal to 30 

cm in depth for at least 50% of the study period (Wakeley et ah, 2010). Because groundwater 

data are rarely available and almost never distributed spatially, other hydrologic indicators, e.g., 

hydrophytic vegetation, hydric soils, hydrogen sulfide odors, and the presence of crayfish 

burrows, are often used to delineate wetlands (Wakeley et al, 2010). The exceedance 

probabilities of groundwater levels from all study sites indicated that only two areas meet the 

hydrologic definition of a wetland (Fig. 6): burrow wells located at the Chandler Property and 

Warm Springs Fish Hatchery. Cambarus harti habitats located at the Cartwright Property and 

White Sulphur Springs have mean groundwater depths around -40 cm and -37 cm, slightly 

deeper than the 30 cm criteria for jurisdictional wetlands. These study sites have strong hydrogen 

sulfide odors suggesting that they experience regular soil saturation and could be designated as 
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wetlands. Thus, the presence of C. harti does appear to be a reliable indicator of the presence of 

wetland habitats. 

Temperature influences physiologic and behavioral characteristics of crayfish (Crawshaw 

et al, 1983; Whiteley et al, 1997). Crayfish can tolerate a wide range of temperatures (Aiken, 

1968; Mundahl, 1989; Mundahl & Benton, 1990; Nakata et al, 2002; Payette & McGaw, 2003). 

In the present study, groundwater temperatures varied little over short time-scales, while the 

dominant temperature fluctuations occurred seasonally (Fig. 8). Groundwater for areas inhabited 

by C. harti and surrounding areas exhibited similar temperature ranges (6.8-22 °C) and 

fluctuation patterns (Fig. 8). Behavioral preference trials generally report that crayfishes select 

temperatures between 18-26°C, which appears to be the optimal temperature range for growth 

and survival (Crawshaw, 1974; Peck, 1985; Mundhal & Benton, 1990; Payette & McGraw, 

2003). Temperatures above and below this range resulted in decreasing growth rate and 

alteration of crayfish behaviors (Mundhal & Benton, 1990; Payette & McGaw, 2003). 

Decreasing growth rates of crayfish at suboptimal temperatures are not uncommon since crayfish 

generally molt less frequently during cooler, winter months (Mundhal and Benton, 1990). At 

extremely high temperatures (>30 °C), abnormal post-molting mortality is common (Mundhal & 

Benton, 1990; Nakata et al, 2002). 

Groundwater chemistry 

Acidic waters can affect crayfish behavior, metabolism, and physiology (Appelberg, 

1985; France, 1985; Wood & Rogano, 1986; Patterson & deFur, 1988; Allison et al, 1992; 

France, 1993) and ultimately, their growth and survival (Malley, 1980; Berrill et al, 1985; 

France & Collins 1993). The most apparent effect that acidic waters can have on crayfish is a 
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decrease in post-molt calcification, resulting in increased stress and mortality (Malley, 1980; 

Morgan & McMahon, 1982; France, 1993; Zanotto & Wheatly, 1993). Cambarus harti inhabit 

acidic groundwater (pH=4.8-6.4, Fig. 9), suggesting that this species can tolerate low pH 

conditions. 

Crayfish tolerance for acidic conditions may be species dependent. Newcomber (1975) 

found Parastacoides tasmanicus (a burrowing crayfish) inhabited waters with a mean pH of 4.5 

and a minimum of 3.8. Cambarus diogenes, another primary burrower, inhabited mildly acidic 

groundwater with a mean pH of 6.25 (Grow & Merchant, 1980). In soft waters, the surface 

dwelling Orconectes rusticus and O. propinquus experienced pH toxicity at values ranging from 

5.4-6.1. In contrast, Cambarus robustus, another surface dwelling crayfish, survived at pH values 

near 4 (Berrill et al., 1985). Morgan & McMahon (1982) tested the median lethal pH of 

Procambarus clarkii and O. rusticus and found their tolerances were roughly equivalent (2.8 and 

2.5 respectively). Clearly, crayfishes differ in their tolerance to acidic conditions. Results from 

this study indicate that while C. harti tolerates long-term exposure to mildly acidic waters, it 

does not experience extremely low pH in its natural habitats. 

Results from this study also showed that groundwater near burrowing crayfish 

experienced oxygen depleted conditions (minimum 0.24 mg/L) consistent with Grow and 

Merchant (1980) and Noro and Buckup (2010). Grow and Merchant (1980) found dissolved 

oxygen concentrations in C. diogenes burrows ranged from 0.40-3.20 mg/L. Noro and Buckup 

(2010) observed Parastacus defossus inhabiting burrow waters with dissolved oxygen 

concentrations ranging from 0.70-1.93 mg/L. This study also found that groundwater 

environments inhabited by burrowing crayfish can also become oxygenated (maximum 8.31 

mg/L). The variation in dissolved oxygen was seasonal, with oxic conditions occurring during 
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cooler months and suboxic-hypoxic levels during summer (Fig. 12). There was a negative 

correlation (p= -0.67) between groundwater temperature and dissolved oxygen concentrations 

and a similar negative relationship (p= -0.63) between groundwater temperature and percent 

dissolved oxygen saturation. Thus, the observed variation in dissolved oxygen concentration may 

be attributed to elevated microbial respiration of organic materials at higher temperatures (Starr 

& Gillham, 1993; Malard & Hervant, 1999; Datry et al, 2004) rather than temperature-driven 

changes in oxygen saturation. 

Oxygen depletion can have physiological and behavioral effects on crayfish (Wiens & 

Armitage, 1961; McMahon et al, 1974; Wilkes & McMahon, 1982a; Wilkes & McMahon, 

1982b; Gade, 1984; Reiber & McMahon, 1998; McMahon, 2001). To persist in oxygen depleted 

waters, C. harti and other primary burrowing crayfish may have evolved physiological and 

behavioral adaptations to tolerate suboxic-hypoxic conditions (Dickson & Franz, 1980). Crayfish 

mitigate oxygen depletion by reducing oxygen uptake and lowering their metabolism or by 

holding these 2 attributes constant until a minimum dissolved oxygen threshold is reached 

(Larimer & Gold 1961; Wiens & Armitage, 1961; Reiber, 1994, 1995). Cambarus harti and 

other primary burrowers can cope with low oxygen concentrations by positioning their gills at 

the air-groundwater interface (Grow & Merchant, 1980; Stoeckel et al, 2011; Helms et al, 

2013a; Helms et al, 2013b) using water retained in the branchial chamber to diffuse atmospheric 

oxygen across the gills (Taylor et al, 1973; Taylor & Wheatly, 1980). 

Burrowing crayfish may have also evolved morphological adaptations for tolerating 

hypoxia. A possible morphological adaptation observed in primary burrowing species is an 

obliterated areola (Hobbs, 1981), which may be a result of increased gill surface area and 

D 
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branchial chamber volume (Swain et a!., 1988). Larger gill surface area and expanded branchial 

chamber volume allow for increased oxygen diffusion across the gills. 

Except chloride, groundwater chemistry exhibited similar concentrations between C. 

harti habitat and surrounding areas (Fig. 14). The dominant factor controlling chemical 

constituents in groundwater is chemical weathering of underlying bedrock geology (Back, 1960; 

Back, 1966; White et al, 1980; Frape et al., 1984; Thomas et al., 1989; Guler & Thyne, 2004; 

Glynn & Plummer, 2005). These similarities in water chemistry found among wells are possibly 

an effect of relatively homogenous soil and bedrock compositions across small spatial scales 

(<100m). 

Chloride, potassium, and manganese concentrations in groundwater differed across study 

sites. White Sulphur Springs contained 4-10 times higher chloride concentrations in comparison 

to other study sites and 2 times the amount of potassium relative to the Cartwright Property. 

Groundwater at White Sulphur Springs contained 0.5-2 times higher manganese concentrations 

in comparison to other study sites, while the Warm Springs Fish Hatchery contained nearly 1.5 

times the concentration as the Cartwright and Chandler Properties. 

Crayfish burrows contained on average 16-18 times the chloride concentration as burrow 

and non-burrow wells. The small amount of chloride measured in non-burrow wells is likely the 

consequence of chemical weathering of bedrock (Kuroda & Sandell, 1953: Mullany et al, 2009) 

and/or atmospheric deposition (Feth, 1981; Neal & Kirchner, 2000). The higher concentrations 

found in crayfish burrows could indicate that excess chloride results from biological processes. 

Kristiensen and Hensen (1992) found that the crayfish Astacus astacus excreted significantly 

higher amounts of nutrients when fed shrimp pellets compared to those fed potatoes. Gonzalo 
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and Camargo (2012) found bioaccumulation of fluoride in the crayfish Pacifasticus leniusculus 

lead to the release of excess fluoride. These studies suggest it is conceivable that food sources 

consumed by C. harti could contain chloride, resulting in a net efflux of chloride-rich waste into 

burrow water and elevating chloride levels. Further experiments would be required to determine 

if crayfish burrowing activity explains the elevated chloride concentration observed in burrow 

water. 

Soil texture 

Survival and success of primary burrowing crayfish depends on their ability to reach 

groundwater, which is in part affected by soil properties such as sediment texture (Dorn & Volin, 

2009; Stoeckel et ah, 2011). The current study found C. harti habitats consist of sandy soils (79- 

92%) containing minor components of silt and clay (10-20%). In contrast, Grow (1982) found C. 

diogenes burrowed most efficiently in fine-grained soils (100% silt and clay), while Loughman 

et al. (2012) found Fallicambarns fodiens were generally associated with soils containing less 

than 27% clay. 

The current study found similar sand and silt/clay content between areas with and without 

C. harti. These results suggest soil texture is not the exclusive environmental factor controlling 

the distribution of this primary burrowing crayfish. While Helms et al. (2013 b) reported C. harti 

excavated larger chambers in sandy loam soils from the type locality, crayfish also burrowed in 

clayey loam test soils. Cambarus striatus burrowed in both sand- and clay-dominated soils but 

was less effective in burrowing in sand-dominated substrates (Stoeckel et al, 2011). These 

studies support the hypothesis that primary burrowing crayfish do not appear to select burrow 

locations based solely on soil texture. 
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CONCLUSION 

Effective conservation of imperiled species depends on the protection of their habitat. 

Outside of the type locality, little is known about the habitat characteristics of C. harti. To 

address this deficiency, this study characterized groundwater levels, water chemistry, and soil 

texture at sites occupied by known populations of C. harti. Cambarus harti inhabited forested 

wetlands with shallow groundwater (i.e., depths less than 1 m below the ground surface). While 

this species can tolerate variation in groundwater level, anthropogenic alteration of groundwater 

hydrology (e.g., water extraction, land cover alterations, climate shifts) could extirpate 

populations of C. harti. 

Suitable habitat for C. harti appears to include areas where groundwaters are acidic 

(pH=4.77-6.36) and can be hypoxic (<3 mg/L dissolved oxygen) during summer months. The 

results of this study showed no evidence C. harti require groundwater with specific chemical 

signatures (based on potassium, iron, manganese, and silica). Although soil texture does not 

appear to be the primary factor affecting burrow locations for C. harti, soils must be cohesive 

and malleable. Results from this study provide much needed insights into groundwater 

environments endured by primary burrowing crayfish, helps characterize suitable C. harti 

habitat, and provides fundamental information necessary for the conservation of this endemic 

species. Conditions measured may have required primary burrowing crayfish to evolve special 

adaptations (e.g., increased gill area and branchial chamber volume) for the tolerance of 

environmental characteristics (hypoxia and acidic conditions) that would be uninhabitable by 

their epigean counterparts. 
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Figure 1. Map of Meriwether County river networks with study locations 
(dots) (inset map) and Georgia counties map indicating the location of 
Meriwether County (top right). Dark line trending N-S through Meriwether 
County represents the watershed boundary between the Chattahoochee (left) 
and Flint (right) River drainage basins. 
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Figure 2. Image of the 4 study sites in Meriwether County, GA: (A) Cartwright Properly; (B) 
Chandler Property; (C) Warm Springs Fish Hatchery; (D) White Sulphur Springs. Circles with 
crosses inside: non-burrow wells; circles without crosses: burrow wells; diamonds: soil extraction 
sites; and continuous lines represent streams. 
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Figure 3. Cross-section of groundwater monitoring well set up. Wells were installed to depths greater 
than water table depths. SOLNST® Levelogger Juniors were stationed at the bottom of wells. A 
SOLNST® Barologger was installed in the upper portion of the non-burrow well at the Warm Springs 
Fish Hatchery. Leveloggers recorded water pressure + overlying air pressure and water temperature. 
Leveloggers were programmed to record groundwater pressure and temperature every 30 min from 
6/6/2013-8/1/2014. 
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Figure 4. Time-series of groundwater level for non-burrow (black line) and burrow (gray line) wells across the 4 study sites: (A) Cartwright 
Property (A); (B) Chandler Property; (C) Warm Springs Fish Hatchery; (D) White Sulphur Springs. Groundwater levels represent depths 
below/above ground surface. Measurements were recorded every 30 min from 6/6/2013-8/1/2014 using SOLINST® Levelogger Juniors 
(n=161,656). 
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Figure 5. Box plot of groundwater levels between non-burrow (shaded) and 
burrow (open) wells and across study sites. Dashed line represents groundwater 
surface. Gray circles represent outliers; stars represent extreme outliers. 
Measurements were recorded every 30 min from 6/62013-8/1/2014 using 
SOLINST® Levelogger Juniors (n=161,656). Whiskers represent 10th and 90th 

percentile; box ends represent 25th and 75th percentiles; dark lines represents 50th 

percentile. Different letters represent significant statistical differences (P<0.005) 
indicated by Tukey HSD. Treatment differences are represented by capital letters; 
site differences are represented by lower-case letters. 
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Figure 6. Exceedence plots for groundwater level for non-burrow (black line) and burrow (gray line) monitoring wells across the 4 study sites: 
(A) Cartwright Property; (B) Chandler Property; (C) Warm Springs Fish Hatchery; (D) White Sulphur Springs. Groundwater levels represent 
depths below/above ground surface. Measurements were recorded every 30 min from 6/6/2013-8/1/2014 using SOLfNST® Levelogger Juniors 
(n=161,656). 
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Figure 7. Time-series displaying the relationship between mean groundwater 
(black) and air (gray) temperature from 6/7/2013-8/1/2014. Groundwater 
temperature was recorded every 30 min using SOLINST® Levelogger Juniors. 
Groundwater temperatures from all wells were used to calculate mean 
groundwater temperature. Air temperatures were recorded using a SOLINST® 
barometric pressure logger stationed in the non-burrow well located at the 
Warm Springs Fish Hatchery. 
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Figure 8. Time-series of groundwater temperatures for non-burrow (black) and burrow wells (gray) for the 4 study sites: (A) 
Cartwright Property; (B) Chandler Property; (C) Warm Springs Fish Hatchery; (D) White Sulphur Springs. Measurements were 
recorded every 30 min from 6/6/2013-8/1/2014 using SOLINST® Levelogger Juniors (n=161,656). 
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Figure 9. Box plot of mean pH for non-burrow and burrow wells across the 4 study 
sites. Measurements were recorded every 1-4 weeks from 6/6/2013-8/1/2014 using a 
YSI Multiparameter Water Quality Sonde (n=160). Whiskers represent 10th and 90th 

percentile; box ends represent 25th and 75th percentiles; dark lines represents 50th 

percentile. Circles represent outliers. Different letters represent significant statistical 
differences (P<0.005) indicated by Tukey HSD. Treatment differences are 
represented by capital letters; site differences are represented by lower-case letters. 
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Figure 10. Mean dissolved oxygen concentrations between non-burrow and burrow 
wells across the 4 study sites. Dissolved oxygen concentrations were recorded every 1-4 
weeks from 6/6/2013-8/1/2014 using a YSI Multiparameter Water Quality Sonde 
(n=152). Error bars represent 95% confidence intervals. Different letters represent 
significant statistical differences (P<0.005) indicated by Tukey HSD. Site differences 
are represented by lower-case letters. 
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Figure 11. Exceedance plots for groundwater dissolved oxygen concentrations for non- 
burrow wells (black) and burrow wells (gray). Measurements were recorded every 1-4 
weeks from 6/6/2014-8/1/2014 using a YSI Multiparameter Water Quality Sonde. 
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Figure 12. Time-series of groundwater dissolved oxygen concentrations (top) and 
temperature (bottom). Measurements were recorded every 1-4 weeks from 
6/6/2013-8/1/2014. Groundwater temperature and dissolved oxygen concentrations 
were measured using a YSI Multiparameter Water Quality Sonde (n=152). Error 
bars represent standard deviations. 
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Figure 13. Scatter plot displaying correlation between groundwater temperature and dissolved 
oxygen concentrations. Measurements were recorded every 1-4 weeks from 6/6/2013- 
8/1/2014 using a YSI Multiparameter Water Quality Sonde (n=304). 
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Figure 14. Mean chloride, potassium, iron, manganese, and silica concentrations in 
groundwater collected from non-burrow wells, burrow wells, and crayfish burrows 
located at each of the 4 study sites. A total of 10 water quality samples were collected 
from each well every 1-4 weeks from 1/16/2014-8/1/2014 and analyzed for chloride, 
potassium, total iron, total manganese, and silica. Crayfish burrow water was 
collected via burrow excavation. When groundwater levels were near the surface, a 
siphoning pump and tube were used. Error bars represent 95% confidence intervals. 
Different letters represent significant statistical differences (P<0.05) in chloride 
concentrations indicated by Tukey HSD. 
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Figure 15. Mean potassium (top), chloride (middle), and manganese (bottom) 
concentrations in groundwater collected across the 4 study sites. Water samples 
were collected from each well and burrow every 1-4 weeks from 1/16/2013- 
8/1/2014. Crayfish burrow water was collected via burrow excavation. When 
groundwater levels were near the surface, a siphoning pump and tube were 
used. Error bars represent 95% confidence intervals. Letters represent 
significant site differences indicated by Tukey HSD (P<0.05). Differences in 
chloride and manganese concentrations across study sites were compared by 
running a Tukey HSD on ranked values. 
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Figure 16. Box plots of percent silt/clay content in soils for non-burrow (clear) and 
burrow (gray) areas across the 4 study sites (n=24). Soil samples were collected from 
locations in close proximity to both non-burrow and burrow wells using a 99 cm soil 
probe. Whiskers represent 10th and 90th percentiles; box ends represent 25th and 75' 
percentiles; dark lines represents 50th percentile. Different letters represent significant 
statistical differences (P<0.005) indicated by Tukey HSD. Site differences are 
represented by lower-case letters. 
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TABLES 

Table 1. Max, min, and average groundwater levels and temperatures for each of the 4 study sites. Measurements were recorded 
eveiy 30 mins from 6/6/2013-8/1/2014 using SOLINST© Levelogger Juniors. 

41 

Cartwright Property    Chandler Property    Warm Springs Fish Hatchery    White Sulphur 

Max GW Depth (cm) -126.60 -96.60 -118.7 -99.29 

Min GW Depth (cm) 16.86 1.64 2.22 3.98 

Avg. GW Level (cm) -65.13±30.22 -49.46±23.17 -45.02±42.64 -45.63±26.78 

Max GW Temperature (C°) 22 20.80 20.70 21.6 

Min GW Temperature (C°) 6.80 9.10 10.30 7.00 

Avg. GW Temperature (C°) 16.05±3.91 15.92±3.28 15.90±2.80 16.10±3.97 

±vahies represent standard deviations 
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Table 2. Maximum spectra and periods for groundwater levels for monitoring wells. Periods were used to 
calculate time-scales (in weeks) in which dominant fluctuations occurred. Well ID's ending in C represent non- 
buiTow (control) wells; well ID's ending in E represent burrow (experimental) wells. 

42 

Study Site Well ID Maximum Spectra (dB)       Period (Weeks) 

Cartwright Property SCL2C .7x105 6.7 

Cartwright Property SCL1E 8.5x10" 7.5 

Chandler Property JCLW11C 4.1x10" 6.0 

Chandler Property W10E 5.3x10" 12.1 

Warm Springs Fish Hatchery       WSF-WELL2C 2.9x103 12.1 

Warm Springs Fish Hatchery WSF3E 9.9x10" 12. 

White Sulphur Springs WSSPWELL2C 3.3x103 8.6 

White Sulphur Springs WSSPWELL1E 3.2x103 12.1 
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Table 3. Chemicals tested for in groundwater and their associated methods. 

Chemical 

Chloride 

Method 

Mercuric thiocyanate 

Source Method 

HACH8113 

Potassium 

Iron 

Tetraphenylborate 

Phenanthroline 

HACH 8049 

40 CFR 136 

Manganese Periodate oxidation 40 CFR 136 

Silica Heteropoly blue HACH 8186 
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APPENDIX A 

PHYSICOCHEMIS TRY 

Date Study Site Well ID 

8/15/2013 

8/29/2013 

9/12/2013 

9/26/2013 

10/10/2013 

10/25/2013 

11/6/2013 

11/26/2013 

12/10/2013 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

Temperature Specific 
Conductance 

(°Q (uS/cm) 
pll Dissolved Dissolved 

Oxygen (%)      Oxygen (mg/L) 

20.62 

20.44 

21.05 

20.08 

19.47 

18.34 

17.67 

15.2 

15.29 

141 

169 

NA 

247 

142 

149 

50 

44 

41 

5.83 

6.01 

5.99 

5.98 

5.88 

5.81 

5.9 

6.37 

8.3 

8.8 

13.1 

8.2 

34.8 

48.8 

63.7 

81.5 

0.74 

0.79 

1.17 

0.74 

3.15 

4.6 

6.06 

5.74 59.3 5.93 
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12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

Carl wright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Properly 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

13.33 

I 1.73 

10.75 

11.09 

11.36 

12.03 

13.5 

14.98 

17.73 

NA 

NA 

19.89 

NA 

31 

27 

31 

31 

35 

93 

137 

NA 

NA 

NA 

73 

NA 

5.56 55.7 

5.62 67.2 

5.67 

5.36 

5.51 

5.9 

5.86 

6.24 

6.31 

NA 

NA 

5.62 

NA 

75.1 

61.1 

53 

46.2 

35.1 

7.7 

5.6 

NA 

NA 

7.9 

NA 

5.81 

7.3 

8.31 

6.75 

5.8 

5.17 

3.66 

0.77 

0.52 

NA 

NA 

0.72 

NA 
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54 

8/15/2013 

8/29/2013 

9/12/2013 

9/26/2013 

10/10/2013 

10/25/2013 

11/6/2013 

11/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

Cartwright 
Properly 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

SCLlli 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

22.52 

21.11 

21.43 

20.01 

8.96 

16.48 

15.62 

12.76 

13.54 

10.12 

9.01 

7.08 

8.64 

49 

58 

98 

69 

49 

43 

38 

54 

62 

38 

36 

40 

37 

4.94 

5.56 

5.56 

5.24 

5.45 

5.59 

5.69 

5.28 

4.94 

4.88 

4.87 

5.04 

4.77 

12.5 

15.7 

9.2 

15 

40.2 

57.2 

56.9 

59.1 

49.1 

38.7 

52.5 

66.9 

46 

1.08 

1.39 

0.81 

1.36 

3.72 

5.58 

5.65 

6.26 

5.1 

4.35 

6.07 

5.35 
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55 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

6/6/2013 

8/15/2013 

8/29/2013 

9/12/2013 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Properly 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCLIE 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

10.1 

11.85 

13.29 

16.7 

18.84 

19.65 

20.7 

21.5 

20.98 

17.35 

21.05 

20.66 

20.88 

34 

33 

30 

37 

52 

63 

100 

34 

36 

11 

74 

87 

4.8 

5.31 

4.78 

4.94 

5.5 

5.67 

6.23 

4.89 

5.12 

5.5 

5.63 

5.88 

5.75 

39.3 

37.5 

17.3 

14.1 

9.6 

2.7 

27.7 

12.9 

12.3 

7.7 

9.3 

9.1 

4.39 

4.05 

1.81 

1.37 

0.75 

0.88 

0.24 

2.45 

.15 

0.69 

0.84 

0.81 
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56 

9/26/2013 

10/10/2013 

10/25/2013 

11/6/2013 

11/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

3/2/2014 

3/23/2014 

4/16/2014 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

W10E 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

jCLwnc 

JCLW11C 

JCLW11C 

JCLW11C 

JCLwnc 

19.97 

19.17 

17.54 

16.81 

14.65 

14.29 

11.79 

10.79 

9.15 

10.2 

11.33 

12.82 

14.96 

92 

87 

47 

42 

37 

42 

40 

31 

35 

35 

32 

34 

35 

5.75 

5.7 

5.49 

5.84 

6.34 

5.82 

5.76 

5.68 

5.66 

5.39 

5.85 

5.89 

5.29 

13.5 

16.3 

48.4 

55.7 

76.3 

53.7 

56.9 

59.8 

65.3 

50.9 

52.3 

48.2 

13.6 

1.22 

1.5 

4.63 

5.41 

7.74 

5.49 

6.15 

6.61 

7.52 

5.7 

5.72 

5.1 

1.37 
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57 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

6/6/2013 

8/15/201 

8/29/2013 

9/12/2013 

9/26/2013 

10/10/2013 

10/25/2013 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

JCLW1IC 

.ICLW11C 

JCLW1IC 

JCLW11C 

JCLW11C 

JCLW11C 

W10E 

W10E 

W10E 

W10E 

W10E 

WI0E 

W10E 

16.18 

18.29 

18.95 

20.06 

20.23 

20.38 

18.05 

NA 

20.4 

20.8 

19.52 

18.52 

16.95 

40 

68 

59 

105 

92 

93 

132 

54 

58 

59 

59 

54 

51 

5.41 

5.64 

5.6 

5.92 

5.94 

5.64 

5.42 

5.53 

5.46 

5.41 

5.3 

5.51 

4.5 

5.8 

6.9 

4.3 

6.2 

8.7 

4.7 

7.4 

5.6 

4.4 

4.4 

27.5 

0.44 

0.54 

0.64 

0.39 

0.56 

0.78 

0.57 

0.41 

0.67 

0.5 

0.4 

0.41 

2.64 
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1/6/2013 

11/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Properly 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

W10E 

W10E 

WI0E 

W10E 

W10E 

WI0E 

WI0E 

W10E 

W10E 

W10E 

W10E 

W10E 

W10E 

16.06 

14.02 

14.17 

11.73 

10.76 

9.36 

10.32 

11.38 

12.91 

13.98 

16.53 

16.94 

18.73 

42 

37 

38 

37 

32 

37 

35 

33 

35 

36 

49 

61 

50 

5.72 

5.88 

5.67 

5.6 

5.66 

6.11 

5.44 

5.47 

5.93 

5.37 

5.48 

5.43 

5.43 

39.5 

46.9 

40.9 

58.9 

51.7 

58.9 

47.4 

30.5 

24.9 

17.2 

5.6 

2.4 

4.5 

3.88 

4.81 

4.19 

6.38 

5.74 

6.75 

5.31 

3.34 

2.63 

1.77 

0.55 

0.28 

0.42 
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6/30/2014 

7/23/2014 

8/1/2014 

8/15/2013 

8/29/2013 

9/12/2013 

9/26/2013 

10/10/2013 

10/25/2013 

11/6/2013 

11/26/2013 

12/10/2013 

12/31/2013 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

W10E 19.46 

W10F 19.98 

W10E 20.06 

WSF-WELL2C 20.65 

WSF-WFLL2C 20.51 

WSF-WELL2C 20.76 

WSF-WELL2C 20.22 

WSF-WELL2C 19.69 

WSF-WELL2C 18.38 

WSF-WELL2C 17.81 

WSF-WEEL2C 16.16 

WSF-WELL2C 15.73 

WSF-WELL2C 13.26 

54 5.41 4.6 0.42 

54 5.48 4.6 0.42 

48 5.19 3.3 0.3 

76 5.98 0.8 

73 5.2 10 0.9 

79 6.08 9.2 0.81 

59 5.84 8.2 0.74 

75 6.16 19.3 1.76 

24 5.66 62 5.81 

19 5.46 64.6 6.14 

5.87 71.2 

19 5.62 68.6 6.82 

24 4.88 72.1 7.53 

gnammam 

59 
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60 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

8/15/2013 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fisli Hatchery 

Warm Springs 
Fish 1 Iatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish I Iatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish I Iatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELE2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WEEL2C 

WSF-WELE2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WEEL2C 

WSF3E 

12.11 

11.04 

1.25 

11.38 

12.2 

13.76 

15.05 

16.79 

17.44 

18.25 

19.18 

19.57 

21.01 

22 

23 

23 

24 

24 

24 

23 

26 

27 

46 

46 

32 

58 

5.03 

5.16 

4.86 

50.8 

58.6 

54.9 

4.76 41.27 

5.19 

5.12 

4.83 

4.63 

5.24 

5.88 

5.86 

5.32 

5.55 

53.9 

47.4 

5.7 

5.7 

5.9 

4.8 

5.4 

10.5 

8.8 

5.45 

6.45 

6.02 

4.5 

5.77 

4.91 

0.57 

0.55 

0.56 

0.45 

0.48 

0.97 

0.78 
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61 

8/29/2013 

9/12/2013 

9/26/20!: 

10/10/2013 

10/25/2013 

1/6/201 

11/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

WSF3R 

WSF3E 

WSF3E 

WSF3E 

WSF3F 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

20.81 

20.83 

18.88 

17.95 

16 

16.17 

14.15 

14.92 

12.18 

11.2 

10.29 

11.72 

12.68 

34 

26 

22 

18 

26 

23 

19 

19 

20 

5.75 

5.62 

5.27 

5.06 

5.2 

5.41 

6.12 

5.64 

5.45 

5.29 

5.22 

4.94 

5.8 

17.2 

29.9 

24.1 

29.5 

52.6 

50.3 

58.5 

12.9 

25.9 

31.7 

53.1 

48 

47.2 

1.53 

2.66 

2.23 

2.79 

5.19 

4.93 

6.01 

1.3 

2.76 

3.48 

6.03 

5.21 

5.01 
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62 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

6/6/2013 

8/15/2013 

8/29/2013 

9/12/2013 

9/26/2013 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

13.86 

13.79 

17.72 

19.57 

19.64 

20.67 

19.12 

19.31 

18.2 

22.25 

21.46 

21.72 

21.04 

21 

20 

21 

23 

20 

25 

29 

20 

358 

420 

443 

453 

464 

5.58 

4.95 

5.33 

4.91 

5.13 

5.69 

5.42 

5.07 

6.5 

6.29 

6.28 

6.22 

6.23 

39.8 

31.9 

32.1 

18.1 

13.8 

4.7 

10.8 

5.1 

5.1 

6.8 

5.4 

6.4 

4.11 

3.2 

3.06 

0.57 

1.66 

1.24 

0.44 

0.48 

0.44 

0.6 

0.47 

0.57 
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63 

10/10/2013 

10/25/2013 

11/6/2013 

1/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWEEL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWEEL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

20.43 

19.08 

17.93 

15.94 

15.19 

12.09 

9.87 

8.6 

9.82 

11.42 

12.91 

14.79 

16.34 

439 

323 

212 

196 

169 

131 

98 

96 

87 

82 

79 

81 

113 

6.26 

5.09 

6.02 

6.08 

5.89 

5.43 

5.73 

5.69 

5.54 

5.88 

6.14 

5.5 

5.68 

5.8 

3.4 

16.2 

26.4 

36.2 

38.5 

49 

40.2 

47.4 

31.5 

20.8 

5.8 

0.52 

0.31 

1.53 

2.59 

0.4 

3.89 

4.35 

5.71 

4.55 

5.16 

3.33 

2.11 

0.57 
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6/5/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

6/6/2013 

8/15/2013 

8/29/2013 

9/12/2013 

9/26/2013 

10/10/2013 

10/25/2013 

11/6/2013 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

While Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL1E 

WSSPWEEL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

18.07 

18.87 

19.77 

20.5 

20.66 

18.79 

22.05 

20.76 

21.08 

20.09 

19.2 

17.38 

16.36 

Ml 

227 

308 

392 

325 

59 

39 

47 

89 

70 

5.11 

6.2 

6.29 

6.32 

47 

38 

5.88 

5.49 

5.67 

5.74 

5.61 

5.97 

5.94 

6.36 

3.8 

3.8 

3.7 

3.8 

5.4 

15.1 

14.8 

14.5 

11.7 

24.9 

52.6 

70.7 

72.4 

0.36 

0.35 

0.33 

0.34 

0.48 

1.41 

1.29 

1.31 

1.04 

2.25 

4.86 

6.78 

7.09 
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11/26/2013 

12/10/2013 

12/31/2013 

1/16/2014 

1/31/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/5/2014 

6/13/2014 

6/30/2014 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

White Sulphur 
Springs 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWEEL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

14.18 

14.01 

10.5 

8.68 

6.32 

8.25 

10.02 

12.01 

5.59 

16.25 

18.3: 

18.6 

20.05 

39 

36 

28 

21 

22 

22 

22 

23 

27 

28 

43 

62 

82 

5.86 68.6 

5.84    58.6 

5.98 

5.86 

5.64 

5.57 

6.25 

5.42 

5.73 

5.98 

58.7 

45.3 

5.54    44.19 

41.7 

36.6 

36.5 

34.5 

5.86    28.5 

5.51 

10.1 

7.04 

6.02 

6.54 

5.26 

5.45 

4.91 

4.13 

3.93 

3.44 

2.79 

0.75 

0.28 

0.92 
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7/23/2014     Wh'te Sulphur     WSSPWELL1E 
Springs 

20.23 93 5.97 6.4 0.58 

8/1/2014      White Sulphur     WSSPWELL1E 20.26 
Springs 

109 5.89 7.5 0.68 
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Date Collected        Study Site Well ID Chloride Potassium Iron        Manganese      Silica 
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

SCL-Burrow 

2.0 

2.2 

12.6 

1.6 

1.2 

2.1 

1.5 

14.9 

104.2 

4.4 

7.1 

0.1 

4.9 

2.3 

1.9 

6.4 

6.86 

5.17 

9.44 

6.78 

10.9 

6.38 

5.66 

16.48 

0 

0.1 

0.7 

0.6 

0.1 

2.396 

8.225 

2.477 

1.658 

0.932 

2.489 

1.207 

2.465 

7.653 
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8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

Cartwright 
Properly 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

SCL-Burrow 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL2C 

SCL1E 

SCL1E 

0.1 

1.5 

1.8 

1.4 

1.5 

1.5 

2.2 

13.7 

1.5 

3.5 

1.6 

3.8 

0.4 

2.7 

0.5 

4.2 

3.3 

2.1 

2.5 

4.5 

1.7 

4.6 

2.7 

1.3 

1.53 

0.004 

12.5 

6.98 

6.9 

9.9 

11.36 

1.34 

5.12 

9.3 

2.81 

0.31 

4.38 

0.1 

0.2 

0.8 

0.6 

0.1 

0.6 

0.1 

3.12 

5.05 

6.114 

3.542 

2.004 

5.914 

3.576 

3.219 

4.172 

5.826 

5.102 

3.386 

2.856 
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3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Cartwright 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

SCL1E 

JCL-Burrow 

JCL-Burrow 

JCL-Burrow 

JCL-Burrow 

JCL-Burrow 

0.9 

0.9 

3.9 

7.2 

1.3 

0.8 

0.5 

2.9 

13.4 

43.5 

4.2 

9.7 

0.9 

2.3 

2.2 

2.9 

2.7 

3.5 

2.7 

2.3 

2.5 

2.5 

0.6 

5.2 

2.4 

10.12 

6.08 

10.34 

10.28 

6.01 

6.76 

7.8 

1.92 

9.1 

4.22 

4.69 

9.46 

9.92 

0.6 

0.2 

0.3 

0.1 

0.1 

2.5 

4.1 

2.004 

1.928 

2.538 

3.506 

0.348 

5.27 

3.67 

4.526 

6.174 

7.533 

1.938 

1.886 

3.107 
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5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

5/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chand lei- 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

JCL-BUITOW 

JCL-Burrow 

JCL-Burrow 

JCL-Burrow 

JCL-Burrow 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

JCLW11C 

4.2 

8.4 

31.6 

1.5 

160.5 

0.7 

2.1 

2.9 

2.1 

1.8 

3.8 

3.5 

4.4 

4.5 

4.6 

2.8 

1.6 

0.9 

1.6 

1.3 

4.4 

2.8 

2 

2.3 

1.2 

11.8 

12.64 

4.31 

12.63 

10.08 

3.53 

17.07 

9.5 

6.27 

9.62 

10.76 

6.89 

6.8 

0 

0.2 

1.9 

0.2 

2.4 

0.1 

2.193 

4.868 

3.58 

4.974 

1.128 

4.852 

6.644 

2.747 

2.772 

3.055 

4.678 

3.51 

6.587 
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7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Chandler 
Property 

Warm Springs 
Fish Hatchery 

JCLW11C 

JCLW11C 

W10E 

W10E 

W10E 

WI0E 

W10E 

W10E 

W10E 

W10E 

W10E 

W10E 

WSF-Burrow 

2.7 

1.6 

1.9 

0.8 

2.3 

7.5 

3.6 

3.9 

5.1 

2 

2.2 

4 

3 

4.7 

1.7 

1.5 

3.3 

4.9 

1.5 

5.1 

4.1 

3.7 

3.9 

9.42 

5.84 

5.8 

6.51 

5.08 

2.89 

6.67 

11.52 

4.94 

10.26 

7.92 

11.66 

6.04 

0.3 

0 

0.3 

0.4 

0.1 

0.2 

0.3 

0.1 

0.1 

3.455 

1.276 

7.408 

5.648 

2.598 

1.577 

2.947 

8.877 

1.958 

4.412 

2.782 

1.821 

4.036 
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2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

WSF-Burrow 

WSF-Bnrrow 

WSF-Burrow 

WSF-Fsurrow 

WSF-Burrow 

WSF-Burrow 

WSF-Burrow 

WSF-Burrow 

WSF-Burrow 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELL2C 

7.5 

6.5 

2.9 

3.9 

33.6 

50.7 

6.9 

2.3 

1.8 

0.5 

2.3 

0.3 

0.2 

13.5 6.25 0.1 

1.9 6.89 0.1 

2.9 5.24 0.2 

3.6 5.89 0.2 

4.6 6.67 0 

4.3 3.91 0 

8.6 4.05 0 

5.2 

2.2 

1.7 

4.8 

2.4 

5.4 

13.2 

3.1 

0.3 

11.62 

6.71 

4.54 

0.1 

0.4 

0.5 

5.56 

3.017 

3.172 

2.6 

0.625 

1.446 

2.271 

0.349 

5.01 

3.116 

2.907 

2.281 

.078 
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4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fisli Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

WSF-WELL2C 

WSF-WELL2C 

WSF-WELL2C 

WSF-WFLL2C 

WSF-WELL2C 

WSF-WELL2C 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

WSF3E 

0.9 

0.8 

0.1 

3.1 

5.6 

2.2 

10.7 

8.52 

0.2 

0.3 

1.3 

7.5 

4.7 

2.5 

2.2 

0.1 

5.2 

2.9 

4.6 5.41 

2.4 5.12 

1.6 8.43 

1.6 3.88 

2.9 5.72 

1.9 

1.4 

4.2 

4.3 

1.2 

11.9 

6.47 

7.46 

3.66 

8.9 

2.6 

0.5 

0.4 

0.1 

0.2 

0 

0.1 

0.6 

0 

1.148 

1.695 

5.854 

1.263 

2.559 

3.968 

3.46 

3.53 

1.996 

1.612 

1.684 

2.04 

1.937 
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6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

Warm Springs 
Fish Hatchery 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

WSF3E 

WSF3E 

WSF3F 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

WSSP-Burrow 

5.1 

1.7 

0.8 

2.7 

25.4 

126.6 

9.7 

1.6 

122 

417.2 

15 

412 

258.5 

2.2 

3.9 

1.4 

2.3 

5.3 

1.4 

3.2 

3.9 

2.1 

2.7 

1.7 

0.206 

6.42 

9.4 

4.7 

10 

6.68 

2.75 

10.62 

6.6 

12.12 

5.14 

6.09 

13.92 

0.48 

0 

0.2 

0.1 

0.8 

0.5 

0.1 

4.1 

4.712 

5.734 

5.996 

9.748 

2.117 

1.237 

6.464 

4.334 

3.954 

3.698 

7.431 

0.497 
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1/16/2014 

2/8/2014 

3/2/2014 

3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

1/16/2014 

2/8/2014 

3/2/2014 

White Sulfui- 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL2C 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

2.8 

4.3 

3.8 

5.4 

3.1 

10.4 

6.5 

11.2 

1.4 

1.4 

1.4 

5.3 

4.4 

3.4 

6.7 

5.4 

3.9 

5.5 

21.5 

31.2 

12.7 

0.9 

3.8 

3.4 

0.26 

12.86 

9.44 

3.99 

4.92 

9.9 

9.82 

6.01 

8.16 

10 

9.46 

3.8 

10.08 

1.1 

0.6 

0.1 

0.3 

0.2 

0.1 

4.934 

9.057 

6.232 

.477 

2.63! 

2.034 

4.854 

8.751 

0.059 

2.348 

4.79 

8.128 

2.967 
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3/23/2014 

4/16/2014 

5/10/2014 

6/13/2014 

6/30/2014 

7/23/2014 

8/1/2014 

White Sulfin- 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sul fin- 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

White Sulfur 
Springs 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELL1E 

WSSPWELE1E 

1.4 

0.8 

2.7 

3.3 

2.3 

1.9 

0.9 

4.9 

4.1 

5.3 

4.7 

4.6 

2.6 

3.8 

12.44 

10.2 

10.92 

9.14 

5.15 

11.2 

5.82 

0.2 

0.3 

0.7 

2.421 

4.878 

1.339 

0.592 

6.25 

3.249 

5.696 

Well ID ending in E represent burrow locations; well ID ending in C represent non-burrow locations. 
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APPENDIX C 

SOIL TEXTURE 

Date Collected Study Site Treatment 
2 mm 1 mm 0.5 mm 

Grain Size 

0.25 mm 0.125 mm 0.06 mm <I.Iid mm 

3/4/2013 Warm Springs Fish Hatchery Burrow 5.13 7.48 19.29 28.37 24.91 9.20 5.62 

3/4/2013 Warm Springs Fish Hatchery Burrow 8.38 8.03 14.00 26.04 22.95 10.43 10.18 

3/4/2013 Warm Springs Fish Hatchery Burrow 4.67 5.90 13.91 13.91 31.51 22.95 7.15 

5/30/2013 Warm Springs Fish 1 latchery Non-Burrow 5.53 7.17 12.63 38.32 21.38 9.49 5.48 

5/30/2013 Warm Springs Fish Hatchery Non-Burrow 8.32 8.99 21.01 37.84 18.02 4.54 1.28 

5/30/2013 Warm Springs Fish 1 latchery Non-Burrow 10.52 5.90 13.88 32.87 20.01 9.79 7.04 

3/4/2013 Chandler Property Burrow 2.20 7.30 26.02 23.37 14.79 10.39 15.94 

3/4/2013 Chandler Property Burrow 1.05 6.58 24.40 23.86 19.09 11.78 13.24 

3/4/2013 Chandler Property Burrow 3.42 9.55 26.39 23.13 13.74 9.91 13.87 

3/28/2013 Chandler Property Non-Burrow 2.76 0.30 29.70 29.62 16.75 9.12 11.76 

3/28/2013 Chandler Property Non-Burrow 0.98 3.60 20.32 24.30 22.03 13.47 15.30 

3/28/2013 Chandler Property Non-Burrow 3.61 4.61 21.90 28.38 22.01 10.50 8.98 

3/8/2013 WhiteSulphurSprings Burrow 0.79 4.53 25.85 22.24 17.39 12.98 16.22 

3/8/2013 WhiteSulphurSprings Burrow 3.60 5.82 23.21 25.34 19.32 12.13 10.59 

3/8/2013 WhiteSulphurSprings Burrow 1.95 7.91 26.41 33.54 17.42 5.91 6.87 
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